
Approximate Caches for Packet Classification

This work supported by the National Science Foundation under Grant EIA-0130344 and the generous donations of Intel Corporation. Any
opinions, findings, or recommendations expressed are those of the author(s) and do not necessarily reflect the views of NSF or Intel.
More details of this work are available at http://www.cse.ogi.edu/sysl/projects/ixp/

Francis Chang, Wu-chang Feng
Systems Software Laboratory

OGI School of Science and Engineering at OHSU
Beaverton, Oregon, USA

{francis, wuchang}@cse.ogi.edu

Kang Li
Department of Computer Science

University of Georgia
Athens, Georgia, USA

kangli@acm.org

Abstract—Many network devices such as routers and
firewalls employ caches to take advantage of temporal locality of
packet headers in order to speed up packet processing decisions.
Traditionally, cache designs trade off time and space with the
goal of balancing the overall cost and performance of the device.
In this work, we examine another axis of the design space that
has not been previously considered: accuracy. In particular, we
quantify the benefits of relaxing the accuracy of the cache on the
cost and performance of packet classification caches. Our cache
design is based on the popular Bloom filter data structure. This
study provides a model for optimizing Bloom filters for this
purpose, as well as extensions to the data structure to support
graceful aging, bounded misclassification rates, and multiple
binary predicates. Given this, we show that such caches can
provide nearly an order of magnitude cost savings at the expense
of misclassifying one billionth of packets for IPv6-based caches.

Keywords— Bloom filter; packet classification; caches;
probabilistic algorithms

I. MOTIVATION
Due to the impending explosion of the Internet address

space (IPv6), the increasing complexity of networks, and the
need to support layer-4 services, we investigate the answer to
one question:

What are the quantifiable benefits that relaxing the
accuracy of a packet classification cache has on the size and
performance of packet classification caches?

Previous studies have shown that on the Internet, TCP
checksums will fail for approximately 1 in 1100 to 1 in 32000
packets, even when link-level CRCs should only admit error
rates of 1 in 4 billion errors. On average, between 1 in 16
million to 1 in 10 billion TCP packets will contain an
undetectable error. We contend that introducing an error in the
range of 1 in a billion will not meaningfully degrade network
reliability.

II. THEORY
In this body of work, the Bloom filter data structure is

analyzed, optimized and adapted for use in a layer-4 network
cache. Unlike previous work using Bloom filters, the
demands of using a Bloom filter in this context favour

maximizing the number of elements (or flow identifiers) that
can be stored in the Bloom filter without exceeding a preset
misclassification threshold, instead of minimizing the error
given a fixed number of elements (or flows).

Given this assumption, we show that:
• The optimal value of L , the number of hash levels in a

Bloom filter, is invariant with respect to the size of the
Bloom filter, M .

• The maximum number of elements that a Bloom filter can
store, k , and the misclassification probability, p , are
roughly logarithmically related.

• k is linearly related to M .
• An optimally full Bloom filter has ½ of its bits set.

III. EXTENSIONS TO THE BLOOM FILTER
We propose two extensions to the Bloom filter – one to

age a Bloom filter, and one to allow the Bloom filter to store
multiple binary predicates.

Bloom filters were originally designed to store large
amounts of static data. A new mechanism to evict data stale
entries is required to adapt this data structure to support a
cache. This work explores two simple options.

The simplest idea is to simply empty the entire cache
whenever it becomes “full”. Although this algorithm can
efficiently use the cache, it is hindered by its need to restart
from a “cold-cache”, causing spikes in the cache miss rate.

A second aging strategy involves employing two separate
Bloom filters – an active cache, and a background cache that
is warmed up, in anticipation of switching the active cache
and the background cache. Although less efficient in its use of
memory, it is effective in removing the performance artefacts
associated with zeroing out the cache.

Finally, we explore the effectiveness of employing
multiple Bloom filters to store multiple-predicates, necessary
for storing information such as a router's outgoing interface
number, or a diffserv priority level.

These extensions are analyzed, and performance of the
system is evaluated using real-world network traces.

